Siderite dissolution in the presence of chromate
نویسندگان
چکیده
Siderite (FeCO3) is an important reduced phase iron mineral and end product of bacteria anaerobic respiration. This study addresses its dissolution behavior in the presence of the oxidant chromate, which is a common environmental contaminant. Macroscopic dissolution experiments combined with microscopic observations by atomic force microscopy show that at pH < 4.5 the dissolution rate with chromate is slower than that in control solution without chromate. Isolated deep dissolution pits and clustered shallow pits occur simultaneously with surface precipitation. The implication is that the surface precipitate inhibits further dissolution. For 5 < pH < 9.5, the slowest dissolution and the fastest precipitation rates are observed, both at edge steps and on terraces. For pH > 10, the dissolution rate in the presence of chromate exceeds that of the control, plausibly due to electron transfer facilitated by FeðOHÞ4 . Dissolution and re-precipitation of round hillocks are observed. X-ray photoelectron spectroscopy indicates the presence of Cr(III) as well as reaction products in a hydroxide form. Based on the redox reaction mechanism, macroscopic dissolution behavior, and previous studies on the reaction products of Fe(II) with Cr(VI), we propose the formation of a low solubility nano-sized Cr(III)–Fe(III)-hydroxide as the surface precipitate. Results from this study provide a basis for understanding and quantifying the interactions between reduced-iron minerals and aqueous-phase oxidants. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Multivariate analysis of the heterogeneous geochemical processes controlling arsenic enrichment in a shallow groundwater system.
The effects of various geochemical processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate models developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS model consisted of bicarbonate, ammonium, phospho...
متن کاملEvidence for silicate dissolution on Mars from the Nakhla meteorite
Veins containing carbonates, hydrous silicates and sulphates that occur within and between grains of augite and olivine in the Nakhla meteorite are good evidence for the former presence of liquid water in the Martian crust. Aqueous solutions gained access to grain interiors via narrow fractures, and those fractures within olivine whose walls were oriented close to (001) were preferentially wide...
متن کاملArsenic removal from water using natural iron mineral-quartz sand columns.
The study has investigated the feasibility of using siderite-coated quartz sand and/or hematite-coated quartz sand columns for removing As from water. Arsenic-spiked tap water and synthetic As solution with As concentrations from 200 to 500 mug/L were used for the experiments. Since three coating methods employed to prepare siderite-coated quartz sand and hematite-coated quartz sand had no sign...
متن کاملApplication of waterworks sludge in wastewater treatment plants
The potential for reuse of iron-rich sludge from waterworks as a replacement for commercial iron salts in wastewater treatment was investigated using acidic and anaerobic dissolution. The acidic dissolution of waterworks sludge both in sulphuric acid and acidic products such as flue gas washing water and commercial iron solution was successful in dissolving the iron from waterworks sludge. The ...
متن کاملOxidative dissolution of chromium(III) hydroxide at pH 9, 3, and 2 with product inhibition at pH 2.
Hexavalent chromium, Cr(VI), can be immobilized under neutral to alkaline conditions by reduction to Cr(III); similarly, the mobility of naturally occurring Cr in soils and sediments can be limited by its occurrence in the +III oxidation state. Conversely, the oxidation of Cr(IIi) to Cr(VI) increases both its toxicity and often its mobility. Dissolution of Cr-(OH)3(s) in 0.01 M NaNO3 suspension...
متن کامل